If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6y^2+17y-37=0
a = 6; b = 17; c = -37;
Δ = b2-4ac
Δ = 172-4·6·(-37)
Δ = 1177
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-\sqrt{1177}}{2*6}=\frac{-17-\sqrt{1177}}{12} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+\sqrt{1177}}{2*6}=\frac{-17+\sqrt{1177}}{12} $
| 1,5y-7=0,5y | | (x-500000)/x=0.375 | | 162900+0.03*x=x | | 29396x-7272=2725 | | 333x+5=338 | | n(n+1)(n+2)-35=0 | | 32+6y/2=64 | | v+v-2v-v+1=13 | | 60/40=10/x | | 2n-1=512 | | 46*1.15=x | | 46=x*1.15 | | 9x+3=21+4x | | 4/3x-2/3=-6 | | X+5=2x+13 | | (2x+8)=(8x-4) | | 2(2y)^2))+(3y^2)=3971 | | 9x+3=74 | | 1+3x=-10+4x | | 40-2x=93-4x | | 3y^2-31y-60=0 | | Y=-3.4x+43 | | (15)+120=135)=z | | z=(15)+120(135) | | z=(15)+120135) | | z=(15)+120=135) | | z=(90+120)/15 | | z=(100+120)/15 | | z=(135+120)/15 | | z=(90-120)/15 | | z=(100-120)/15 | | z=(135-120)/15 |